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A More Serious Problem: Spurious Regressions

When estimating a univariate time series process, we are often interested in
calculating the value of ρ and whether this value equals one or something
less can be of interest: We may be interested in whether shocks have
permanent or temporary effects and, if temporary, how long they take to
fade away. This is one reason to teach about the non-standard distributions
that occur when a time series is nonstationary.

However, there is a deeper problem when analysing nonstationary time series.

Most of econometrics is concerned with assessing relationships between
variables: Usually, we are asking the question “Does x have an effect on y?”
But when two different unrelated nonstationary series are regressed on each
other, the result is usually a so-called spurious regression, in which the OLS
estimates and t statistics indicate that a relationship exists when, in reality,
there is no such relationship.

The modern literature on this dates from a famous paper by Granger and
Newbold from 1974. However, the nature of the problem was known at least
as far back as 1926.
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Yule (1926) on Nonsense Correlations

In 1926, Georges Udny Yule wrote a paper in the Journal of the Royal
Statistical Society called “Why Do We Sometimes get Nonsense
Correlations between Time-Series?”
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George Udny Yule’s Chart from 1926
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Yule’s Discussion of His Chart
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Spurious Regressions: Unit Roots with Drifts

When discussing spurious regressions, econometric textbooks tend to focus
on what happens when we take processes that are unit roots without drift
(i.e. yt = yt−1 + εt with no constant term) and regress them on each other.

In applied econometric work, however, unit root without drift processes are
not very common. Generally, we work with series that tend to be stationary
or else with series that have a clear upward trend and which may be unit
root processes with drift (i.e. take the form yt = α + yt−1 + εt .)

While explanations of how the spurious regression problem works for
non-drifting unit root processes are quite complex, the spurious regression
problem is far more relevant in the case where the processes have drift. It
also turns out that the problem is easier to explain in this case.

A property of drifting unit root processes that we will use is the following

yt = α + yt−1 + εt (1)

= α + α + yt−2 + εt + εt−1 (2)

= αt +
t∑

k=1

εk + y0 (3)

Karl Whelan (UCD) Spurious Regressions and Cointegration February 22, 2011 6 / 18



Useful Results About Infinite Sums

Establishing properties about regressions involving drifting unit root series
will require figuring out properties of sums of the form

∑T
t=1 t and

∑T
t=1 t2.

Note that 1 + 2 + 3 = 6 = (3)(4)
2 and 1 + 2 + 3 + 4 = 10 = (4)(5)

2 . The
general rule is

T∑
t=1

t =
T (T + 1)

2
=

1

2

(
T 2 + T

)
(4)

For sums of squares, we have

T∑
t=1

t2 =
T (T + 1) (2T + 1)

6
=

1

6

(
2T 3 + 3T 2 + T

)
(5)

This means that as T →∞

1

T 2

T∑
t=1

t → 1

2
(6)

1

T 3

T∑
t=1

t2 → 1

3
(7)

Karl Whelan (UCD) Spurious Regressions and Cointegration February 22, 2011 7 / 18



Regressions Featuring Unit Roots with Drifts

Consider regressing yt on the completely unrelated series xt where

yt = αy + yt−1 + εy
t (8)

xt = αx + xt−1 + εx
t (9)

The OLS estimator is

β̂ =

∑T
t=1 xtyt∑T
t=1 x2

t

(10)

=

∑T
t=1

(
αx t +

∑t
k=1 εx

k + x0

) (
αy t +

∑t
k=1 εy

k + y0

)∑T
t=1

(
αx t +

∑t
k=1 εx

k + x0

)2 (11)

As T gets large, the terms in t2 will dominate all other terms. Re-writing
this as

β̂ =
1

T 3

∑T
t=1

(
αx t +

∑t
k=1 εx

k + x0

) (
αy t +

∑t
k=1 εy

k + y0

)
1

T 3

∑T
t=1

(
αx t +

∑t
k=1 εx

k + x0

)2 (12)

then all of the terms that are not of the form 1
T 3

∑T
t=1 t2 will go to zero.
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Spurious Regression Results

This means that as T gets large

β̂
p→ αxαy

α2
x

=
αy

αx
(13)

In other words, the OLS estimator will tend towards the ratio of the two
drift terms. In addition, the t statistics will generally indicate that there is a
highly statistically significant relationship.

The next pages show β̂’s and t-stats from regressing yt on xt where

yt = 0.2 + yt−1 + εy
t (14)

xt = 0.1 + xt−1 + εx
t (15)

where the error terms are i.i.d. normally distributed errors. They show OLS
coefficients averaging 2 and highly significant t-stats.

Note that the key terms driving these results were the time trends. These
results also apply to “trend stationary” series like yt = αt + ρyt−1 + εt , so
the problem is not specific to the unit root series.

Similar results apply to regressions featuring unit roots without drifts but
deriving these results analytically is beyond the scope of this module.
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Distribution of β from Regressions of Unrelated Unit Roots
With Drift (T = 500)
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Distribution of t Statistics from Regressions of Unrelated
Unit Roots With Drift (T = 500)
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The I (k) Terminology and Cointegration

Unit root series such as yt = δ + yt−1 + εt are nonstationary: Sums of yt

don’t settle down at a stable mean and it’s covariances change over time.

However, once you calculate the first difference of this series ∆yt = δ + εt , it
becomes a covariance stationary series.

We say a series is integrated of order k (denoted I (k)) if it has to be
differenced k times before it becomes stationary. Sometimes, one can can
come across examples involving I (2) series, but generally the time series in
practical applications are either I (1) or I (0).

The spurious regression problem can be stated as the fact that unrelated
I (1) series regressed upon each other tend to appear to be related according
to the usual OLS diagnostics.

However, what if there really is a relationship? For example, what if yt and
xt are both I (1) series but there existed a coefficient β such that
yt − βxt ∼ I (0). In this case, there is a common trend across the series and
we say that the series yt and xt are cointegrated.

In this case, it turns out that OLS estimates of β are consistent.
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Consistency of OLS Under Cointegration

Consider again the case where xt is a unit root with drift

xt = αx + xt−1 + εx
t (16)

but in this case the variable yt is cointegrated with xt so that

yt = βxt + ut (17)

where ut is mean-zero I (0) series.

We can calculate the properties of the OLS estimator as follows:

β̂ = β +

∑T
t=1 xtut∑t
t=1 x2

t

(18)

= β +

∑T
t=1

(
αx t +

∑t
k=1 εx

k + x0

)
ut∑T

t=1

(
αx t +

∑t
k=1 εx

k + x0

)2 (19)

In this case, the terms in t2 will dominate as T →∞ so that the
denominator of the last term will grow faster than the numerator. This

means that β̂
p→ β. (One could show this more formally using the formulae

for infinite sums derived earlier.)
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Super-Consistency!

Not only is the OLS estimator β̂ of a cointegrating regression consistent, in
the sense that it is likely to get ever-closer to the true value of β as samples
get larger, it turns out it’s superconsistent. What’s that mean?

Now multiply both sides of (19) by T but do this to the right hand side by
dividing the numerator by T 2 and the denominator by T 3:

T
(
β̂ − β

)
=

1
T 2

∑T
t=1

(
αx t +

∑t
k=1 εx

k + x0

)
ut

1
T 3

∑T
t=1

(
αx t +

∑t
k=1 εx

k + x0

)2 (20)

The numerator converges to zero (the sum 1
T 2

∑T
t=1 αx t → αx

2 but is
multiplied by an uncorrelated mean zero series ut) while the denominator

converges to
α2

x

3 . So T
(
β̂ − β

)
p→ 0.

We have seen cases before where β̂ − β converges in distribution to a mean
zero series when multiplied by

√
T . In this case, the gap between the

estimator and the true value converges in probability to zero even when
multiplied by T . This property is known as superconsistency.
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The Error-Correction Representation

Consider two I (1) series, yt and xt . We would expect their first-differences
to have stationary representations

∆yt = αy + γy
1 ∆yt−1 + ... + γy

k ∆yt−k + εy
t (21)

∆xt = αx + γx
1∆xt−1 + ... + γx

k ∆xt−k + εx
t (22)

Now suppose that yt and xt are cointegrated. This means there exists a
value β such that yt − βxt ∼ I (0). But if the processes are as described
above, then there is nothing about the behaviour of either series that would
see the two series tending to move together. So, additional terms are
required to describe these processes.

Specifically, we need additional error-correction terms of the form yt − βxt ,
to get a representation of the form

∆yt = αy + γy
1 ∆yt−1 + ... + γy

k ∆yt−k + θy (yt − βxt) + εy
t (23)

∆xt = αx + γx
1∆xt−1 + ... + γx

k ∆xt−k + θx (yt − βxt) + εx
t (24)

where we expect to have θy ≤ 0 and θx ≥ 0. In other words, when yt rises
above its long-run relationship with xt it tends to fall back and/or xt tends
to increase.
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The Vector Error-Correction Representation

When there are only two series, any potential cointegrating vector is unique
up to multiplication by a scalar (e.g. we could say yt − βxt ∼ I (0) or that
xt − β−1yt ∼ I (0)).

However, when there are n different variables, then there may be multiple
cointegrating vectors, e.g. for Yt = (y1t , y2t , y3t , y4t), one could have
y1t − γ1y3t ∼ I (0) and y2t − γ1y4t ∼ I (0).

Consider the general case, in which there are r cointegrating relationships
among n variables. Specifically, consider the case in which the n × 1 vector
of I (1) series Yt has the property that there exists an r × n matrix A such
that the r series defined by Zt = AYt are all I (0). In this case, there exists
an n × r matrix B such that Yt is described by a Vector Error Correction
Mechanism representation

∆Yt = γx
1∆Yt−1 + ... + γx

k ∆Yt−k + α + BZt−1 + εt (25)

= γx
1∆Yt−1 + ... + γx

k ∆Yt−k + α + BAYt−1 + εt (26)

This result is part of what is known as the Granger Representation Theorem.
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Testing for Cointegration

Suppose we have two I (1) series, yt and xt . How do we test whether they
are cointegrated or whether the relationship between them is spurious? Tests
are based on the idea that if there is no underlying relationship than the
OLS residuals, ût = yt − β̂xt will also have a unit root.

One might be tempted to simply apply an augmented Dickey-Fuller test to
ût . However, the OLS procedure produces residuals that may appear
stationary, even when applying the DF critical values.

This means that special critical values must be applied when testing for
cointegration. These critical values differ depending on whether the
underlying yt and xt series have drifts and on whether the potential
cointegrating regression includes a constant.

In the case where the yt and xt series are both unit roots with drift and the
regression includes a contant, the critical values for testing for a unit root in
ût are the same as those presented in the previous notes for testing for a
unit root against the alternative of trend stationarity (see next page).

When testing for r different cointegrating vectors among n variables, testing
procedures involve estimating a VAR process and assess whether the
relevant VECM is the best fit for the data.
Karl Whelan (UCD) Spurious Regressions and Cointegration February 22, 2011 17 / 18



t Tests of ρ = 1 Applied to Residuals from Regressing Two
Unrelated Random Walks with Drift On Each Other
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